21 research outputs found

    On the Performance Improvement of Iris Biometric System

    Get PDF
    Iris is an established biometric modality with many practical applications. Its performance is influenced by noise, database size, and feature representation. This thesis focusses on mitigating these challenges by efficiently characterising iris texture,developing multi-unit iris recognition, reducing the search space of large iris databases, and investigating if iris pattern change over time.To suitably characterise texture features of iris, Scale Invariant Feature Transform (SIFT) is combined with Fourier transform to develop a keypoint descriptor-F-SIFT. Proposed F-SIFT is invariant to transformation, illumination, and occlusion along with strong texture description property. For pairing the keypoints from gallery and probe iris images, Phase-Only Correlation (POC) function is used. The use of phase information reduces the wrong matches generated using SIFT. Results demonstrate the effectiveness of F-SIFT over existing keypoint descriptors.To perform the multi-unit iris fusion, a novel classifier is proposed known as Incremental Granular Relevance Vector Machine (iGRVM) that incorporates incremental and granular learning into RVM. The proposed classifier by design is scalable and unbiased which is particularly suitable for biometrics. The match scores from individual units of iris are passed as an input to the corresponding iGRVM classifier, and the posterior probabilities are combined using weighted sum rule. Experimentally, it is shown that the performance of multi-unit iris recognition improves over single unit iris. For search space reduction, local feature based indexing approaches are developed using multi-dimensional trees. Such features extracted from annular iris images are used to index the database using k-d tree. To handle the scalability issue of k-d tree, k-d-b tree based indexing approach is proposed. Another indexing approach using R-tree is developed to minimise the indexing errors. For retrieval, hybrid coarse-to-fine search strategy is proposed. It is inferred from the results that unification of hybrid search with R-tree significantly improves the identification performance. Iris is assumed to be stable over time. Recently, researchers have reported that false rejections increase over the period of time which in turn degrades the performance. An empirical investigation has been made on standard iris aging databases to find whether iris patterns change over time. From the results, it is found that the rejections are primarily due to the presence of other covariates such as blur, noise, occlusion, pupil dilation, and not due to agin

    Iris Identification using Keypoint Descriptors and Geometric Hashing

    Get PDF
    Iris is one of the most reliable biometric trait due to its stability and randomness. Conventional recognition systems transform the iris to polar coordinates and perform well for co-operative databases. However, the problem aggravates to manifold for recognizing non-cooperative irises. In addition, the transformation of iris to polar domain introduces aliasing effect. In this thesis, the aforementioned issues are addressed by considering Noise Independent Annular Iris for feature extraction. Global feature extraction approaches are rendered as unsuitable for annular iris due to change in scale as they could not achieve invariance to ransformation and illumination. On the contrary, local features are invariant to image scaling, rotation and partially invariant to change in illumination and viewpoint. To extract local features, Harris Corner Points are detected from iris and matched using novel Dual stage approach. Harris corner improves accuracy but fails to achieve scale invariance. Further, Scale Invariant Feature Transform (SIFT) has been applied to annular iris and results are found to be very promising. However, SIFT is computationally expensive for recognition due to higher dimensional descriptor. Thus, a recently evolved keypoint descriptor called Speeded Up Robust Features (SURF) is applied to mark performance improvement in terms of time as well as accuracy. For identification, retrieval time plays a significant role in addition to accuracy. Traditional indexing approaches cannot be applied to biometrics as data are unstructured. In this thesis, two novel approaches has been developed for indexing iris database. In the first approach, Energy Histogram of DCT coefficients is used to form a B-tree. This approach performs well for cooperative databases. In the second approach, indexing is done using Geometric Hashing of SIFT keypoints. The latter indexing approach achieves invariance to similarity transformations, illumination and occlusion and performs with an accuracy of more than 98% for cooperative as well as non-cooperative databases
    corecore